The translation elongation factor eEF1A1 couples transcription to translation during heat shock response

نویسندگان

  • Maria Vera
  • Bibhusita Pani
  • Lowri A Griffiths
  • Christian Muchardt
  • Catherine M Abbott
  • Robert H Singer
  • Evgeny Nudler
چکیده

Translation elongation factor eEF1A has a well-defined role in protein synthesis. In this study, we demonstrate a new role for eEF1A: it participates in the entire process of the heat shock response (HSR) in mammalian cells from transcription through translation. Upon stress, isoform 1 of eEF1A rapidly activates transcription of HSP70 by recruiting the master regulator HSF1 to its promoter. eEF1A1 then associates with elongating RNA polymerase II and the 3'UTR of HSP70 mRNA, stabilizing it and facilitating its transport from the nucleus to active ribosomes. eEF1A1-depleted cells exhibit severely impaired HSR and compromised thermotolerance. In contrast, tissue-specific isoform 2 of eEF1A does not support HSR. By adjusting transcriptional yield to translational needs, eEF1A1 renders HSR rapid, robust, and highly selective; thus, representing an attractive therapeutic target for numerous conditions associated with disrupted protein homeostasis, ranging from neurodegeneration to cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eukaryotic Translation Elongation Factor 1-Alpha 1 Inhibits p53 and p73 Dependent Apoptosis and Chemotherapy Sensitivity

The p53 family of transcription factors is a key regulator of cell proliferation and death. In this report we identify the eukaryotic translation elongation factor 1-alpha 1 (eEF1A1) to be a novel p53 and p73 interacting protein. Previous studies have demonstrated that eEF1A1 has translation-independent roles in cancer. We report that overexpression of eEF1A1 specifically inhibits p53-, p73- an...

متن کامل

Insights into the Role of Yeast eIF2A in IRES-Mediated Translation

Eukaryotic initiation factor 2A is a single polypeptide that acts to negatively regulate IRES-mediated translation during normal cellular conditions. We have found that eIF2A (encoded by YGR054w) abundance is reduced at both the mRNA and protein level during 6% ethanol stress (or 37°C heat shock) under conditions that mimic the diauxic shift in the yeast Saccharomyces cerevisiae. Furthermore, e...

متن کامل

Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm

Activation-induced deaminase (AID) initiates mutagenic pathways to diversify the antibody genes during immune responses. The access of AID to the nucleus is limited by CRM1-mediated nuclear export and by an uncharacterized mechanism of cytoplasmic retention. Here, we define a conformational motif in AID that dictates its cytoplasmic retention and demonstrate that the translation elongation fact...

متن کامل

HSP70 mRNA translation in chicken reticulocytes is regulated at the level of elongation.

During heat shock of chicken reticulocytes the synthesis of a single heat shock protein, HSP70, increases greater than 10-fold, while the level of HSP70 mRNA increases less than 2-fold during the same period. Comparison of the in vivo levels of HSP70 and beta-globin synthesis with their mRNA abundance reveals that the translation of HSP70 mRNA is repressed in normal reticulocytes and is activat...

متن کامل

Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.

The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were crea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014